Wzory Viet'a - proszę o pomoc
Klaudia: Funkcja kwadratowa f ma dwa miejsca zerowe x1, x2 takie że 1/x1
2 + 1/x2
2 = 7 i x1 X x2 = 1.
Do wykresu funkcji należy punkt A(−6, −2). Napisz wzór funkcji w postaci ogólniej.
Proszę o wyjaśnienie
12 lis 18:16
Janek191:
Wzory Viete' a
12 lis 18:25
Klaudia: A może jakaś pomoc?
12 lis 18:27
Janek191:
| | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | |
( |
| + |
| )2 = |
| + 2* |
| * |
| + |
| |
| | x1 | | x2 | | x12 | | x1 | | x2 | | x22 | |
więc
| 1 | | 1 | | 1 | | 1 | | 2 | |
| + |
| = ( |
| + |
| )2 − |
| = |
| x12 | | x22 | | x1 | | x2 | | x1*x2 | |
| | x1 + x2 | | 2 | |
= ( |
| )2 − |
| |
| | x1*x2 | | x1*x2 | |
zatem
7 = (x
1 + x
2)
2 − 2
(x
1 + x
2)
2 = 9
| | − b | | c | |
x1 + x2 = 3 = |
| i x1*x2 = 1 = |
| |
| | a | | a | |
b = − 3 a c = a
y = a x
2 + b x + c = a x
2 −3 a x + a
A = ( − 6; − 2)
− 2 = a*(−6)
2 − 3a*(−6) + a
− 2 = 36 a + 18 x + a
55 a = − 2
| | −2 | | 6 | | 2 | |
y = |
| x2 + |
| x − |
| |
| | 55 | | 55 | | 55 | |
========================
12 lis 18:50
Janek191:
| | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | |
( |
| + |
| )2 = |
| + 2* |
| * |
| + |
| |
| | x1 | | x2 | | x12 | | x1 | | x2 | | x22 | |
więc
| 1 | | 1 | | 1 | | 1 | | 2 | |
| + |
| = ( |
| + |
| )2 − |
| = |
| x12 | | x22 | | x1 | | x2 | | x1*x2 | |
| | x1 + x2 | | 2 | |
= ( |
| )2 − |
| |
| | x1*x2 | | x1*x2 | |
zatem
7 = (x
1 + x
2)
2 − 2
(x
1 + x
2)
2 = 9
| | − b | | c | |
x1 + x2 = 3 = |
| i x1*x2 = 1 = |
| |
| | a | | a | |
b = − 3 a c = a
y = a x
2 + b x + c = a x
2 −3 a x + a
A = ( − 6; − 2)
− 2 = a*(−6)
2 − 3a*(−6) + a
− 2 = 36 a + 18 x + a
55 a = − 2
| | −2 | | 6 | | 2 | |
y = |
| x2 + |
| x − |
| |
| | 55 | | 55 | | 55 | |
========================
12 lis 18:51
Klaudia: Dziękuję

Pomyliłam dane więc wynik mi się nie zgadza, ale już wiem jak to zrobić
12 lis 19:06