| δ + 2kπ | δ + 2kπ | |||
korzystam ze wzoru: n√z = n√|z|(cos | + isin | |||
| n | n |
| 3 | 3 | |||
w0 = 3√2(cos( | π) + isin( | π)) | ||
| 4 | 4 |
| π | π | |||
w0 = 6√2 = (cos( | ) + isin( | )) | ||
| 4 | 4 |
| 3 | ||
δ = | π? | |
| 4 |
| 3 | 3 | |||
w0 = 6√2(cos( | π) + isin( | π)) | ||
| 4 | 4 |
| 1 | 1 | |||
w0 = 6√2(cos(π − | π) + isin(π − | π)) | ||
| 4 | 4 |
| 1 | 1 | |||
w0 = 6√2(cos(− | π) + isin( | π)) | ||
| 4 | 4 |
| 1 | 1 | |||
w0 = 6√2(cos( | π) + isin( | π)) | ||
| 4 | 4 |
3√−1+i
|3√−1+i|=√12+12=√2
| −1 | √2 | |||
cosφ= | =− | |||
| √2 | 2 |
| 1 | √2 | |||
sinφ= | = | |||
| √2 | 2 |
| 3π | ||
φ= | ||
| 4 |
|
| |||||||||||||||
zk=3√√2*(cos | +i sin | ) | ||||||||||||||
| 3 | 3 |
| π | π | |||
z0=6√2*(cos | +i sin | ) | ||
| 4 | 4 |
| √2 | √2 | |||
z0=6√2*( | +i* | ) | ||
| 2 | 2 |