| sin2n+1x | ||
cosx * cos2x* cos4x*...*cos2nx= | ||
| 2n+1sinx |
| sin(2n+1x) | ||
cosx•cos2x•.....•cos(2nx)= | ||
| 2n+1sinx |
| sin(2n+2x) | ||
cosx•cos2x•.....•cos(2nx)•cos(2n+1x)= | ||
| 2n+2sinx |
| sin(2n+1x) | |
•cos(2n+1x)= | |
| 2n+1sinx |
| sin(2n+1x)•cos(2n+1x) | |
= | |
| 2n+1sinx |
| 2•sin(2n+1x)•cos(2n+1x) | |
= | |
| 2•2n+1sinx |
| sin(2•2n+1x) | |
= | |
| 2n+2sinx |
| sin(2n+2x) | |
=P | |
| 2n+2sinx |
| 2 | ||
a wiemy że elementem neutralnym mnożenia jest 1= | ||
| 2 |