| 1 | 1 | |||
lim ( | − | ) | ||
| x | x2 |
| x −1 | −1 | |||
= limx→0 | = [ | ] = − ∞ ( prawostronna) | ||
| x2 | 0 |
widzę to tak :
| x−1 | ||
lim x→ 0 (1x−1x2) =lim x→0 | = | |
| x2 |
| x(1−1x) | 1−1x | |||
= lim x→ 0 | = lim x→0 | = | ||
| x2 | x |
| 1−1x | 1+∞ | |||
= lim x→ 0− | = [ | ] = −∞ , | ||
| x | −0 |
| 1−1x | 1−∞ | |||
= lim x→ 0+} | = [ | ] = −∞ , | ||
| x | +0 |