matematykaszkolna.pl
nierownosci Hania =): BARDZO PROSZE O POMOC I WYJASNIENIE. Rozwiaz nierownosc: 3+2x −−−−−−− ≥ 0 (2x +1)(x−3) x2 − 3x+2 −−−−−−−−−−−−−− < 0 x2 − 9
15 lis 10:34
Nikka: coś zapis nie ten tego i nie wiadomo o co chodzi...
15 lis 10:36
Hania =): jak to nie wiadomo? nierownosc w ulamku i tyle.
15 lis 10:37
Nikka: tylko, że tych ułamków nie mogę odczytać, nie wiadomo co jest w liczniku a co w mianownikuemotka
15 lis 10:42
Hania =): u gory to co jest wyzej jest w liczniku a to co na dole nizej w mianowniku to sa dwa przyklady. prosze o pomoc bo mi to nie chce wyjsc.!:((
15 lis 10:46
Nikka: wiem co to jest licznik i mianownik... Twój zapis wygląda tak 3+2x −−−−−−−−−−−−−−−−−−−−−−−−−−−≥0, (2x+1)(x−3) x2≥−3x+2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−<0 x2−9 jak mam z tego odczytać co powinno być w liczniku, a co w mianowniku?!
15 lis 10:50
Hania =): naprawde tak to wyglada? u mnie wyglada zupelnie inaczej, dlatego przepraszamemotka 3+2x − licznik (2x +1)(x−3) − mianownik x2 − 3x+2 licznik x2 − 9 mianownik
15 lis 10:55
Nikka:
 3+2x −3x+2 
czyli

≥ 0 i

<0
 (2x−1)(x−3) x2−9 
15 lis 11:01
Hania =): x2 − 3x+2 − licznik drugiego
15 lis 11:03
Nikka: rysunekno tak, nie zauważyłam emotka Przykład 1. D: 2x−1≠0 i x−3≠0
 1 
x≠

i x≠3
 2 
 1 
D=R\{

, 3}
 2 
(po lewej stronie mamy funkcję w postaci ułamka, mianownik nie może być równy zero, czyli musi być różny od zera) Mnożymy obie strony nierówności przez [(2x−1)(x−3)]2 (w ten sposób monożymy przez liczbę dodatnią i nie zmieniamy znaku nierówności) i otrzymujemy: (3+2x)(2x−1)(x−3) ≥ 0
 3 1 
(x= −

, x=

, x=3)
 2 2 
Tu wstawiamy rysunek i odczytujemy :
 3 1 
x∊<−

,

)∪(3,)
 2 2 
15 lis 11:23
Hania =): a drugi przyklad?;>emotka
15 lis 11:50
Nikka: a drugi spróbuj sama emotka
15 lis 11:52
Nikka: zacznij od dziedziny, a ja czekam co Ci będzie wychodzić i pomogę w razie potrzeby... emotka
15 lis 11:53
Hania =): ehh no ok tylko mi powiedz czy mianownik rozbic ze wzrou skroconego mnozenia?
15 lis 11:53
Hania =): ehh no ok tylko mi powiedz czy mianownik rozbic ze wzrou skroconego mnozenia?
15 lis 11:53
Nikka: dokładnie − brawo emotka D: x2−9≠0 i co dalej?
15 lis 11:54
Hania =): x rozne od 3 i −3?
15 lis 11:56
Hania =): x rozne od 3 i −3?
15 lis 11:56
Nikka: dokładnie emotka D=R\{−3,3} dalej... emotka
15 lis 11:58
Hania =): obustronnie mnozymy przez x2 − 9 d kwadratu i powstaje: (x2−3x+2)(x2−9) i obliczam delte i miejsca zerowe
15 lis 12:01
Nikka: bardzo dobrze emotka dla pierwszego nawiasu policz Δ i pierwiastki, drugi wystarczy rozpisać ze wzoru skróconego mnożenia tak jak to zrobiłaś licząc dziedzinę, z takiej postaci można odczytać pierwiastki czyli to 3, −3
15 lis 12:05
Hania =): tak i moje pytanie brzmi czy na wykresie brac pod uwage 3 i −3 skoro x ma byc rozne od 3 i −3
15 lis 12:16
Nikka: na wykresie w −3 i 3 będą kółeczka otwarte bo −3 i 3 musieliśmy wyrzucić z dziedziny jakie pierwiastki otrzymałaś z pierwszego nawiasu? emotka
15 lis 12:48
Hania =): 1 i 2?;> aha to czyli juz mniej wiecej rozumiem dziekuje bardzo
15 lis 12:54
Nikka: 1 i 2 też będą otwarte w odpowiedzi bo mamy jako znak nierówności <
15 lis 13:05
Nikka: jaka odpowiedz otrzymałaś ?
15 lis 13:06
Hania =): x nalezy −3,1 i 2,3 wszystko otwarte;>
15 lis 13:13
Nikka: brawo emotka
15 lis 13:24
Bogdan: rysunek Czas najwyższy poprawnie poprowadzić rozwiązanie tych nierówności:
3 + 2x 
 3 
2(x +

)
 2 
 

≥ 0 ⇒

≥ 0
(2x + 1)(x − 3) 
 1 
2(x +

)(x − 3)
 2 
 
 1 
założenie: x ≠ −

i x ≠ 3
 2 
 3 
(x +

)
 2 
 3 1 

≥ 0 ⇔ (x +

)(x +

)(x − 3) ≥ 0
 1 
(x +

)(x − 3)
 2 
 2 2 
 3 1 
Odp.: x∊<−

, −

)∪(3, +)
 2 2 
15 lis 13:53
Nikka: ups, zrobiłam błąd w obliczeniachemotka ( a tak się starałam) czy możesz Bogdanie sprawdzić b)
15 lis 13:57
Bogdan: rysunek
x2 − 3x + 2 

< 0, założenie: x2 − 9 ≠ 0 ⇒ x ≠ − 3 i x ≠ 3.
x2 − 9 
(x − 2)(x − 1) 

< 0 ⇔ (x − 2)(x − 1)(x − 3)(x + 3) < 0
(x − 3)(x + 3) 
x ∊ .....
15 lis 14:01
Nikka: x∊(−3,1) ∪ (2,3)
15 lis 14:20
Bogdan: emotka
15 lis 14:26
Hania =): dziekuuuje Wam
15 lis 15:04