| x1+x2 | y1+y2 | |||
Dane są punkty A(x1,y1) B(x2,y2) i S( | , | ). Wykaż, że wektor AS = wektor | ||
| 2 | 2 |
| x1+x2 | y1+y2 | x2−x1 | y2−y1 | 1 | ||||||
AS=[ | −x1, | −y1]=[ | , | ]= | [x2−x1,y2−y1] | |||||
| 2 | 2 | 2 | 2 | 2 |
| 1 | ||
to AS= | AB | |
| 2 |
| 1 | 1 | |||
BS=.............podobnie = | [x2−x1, y2−y1]= | AB | ||
| 2 | 2 |
| x1 + x2 | y1 + y2 | |||
AS = [ | − x1 ; | − y1} = | ||
| 2 | 2 |
| − x1 +x2 | − y1 + y2 | |||
= [ | ; | ] | ||
| 2 | 2 |
| x1 + x2 | y1 + y2 | |||
SB = [ x2 − | ; y2 − | ] = | ||
| 2 | 2 |
| x2 − x1 | y2 − y1 | |||
= [ | ; | ] | ||
| 2 | 2 |
!