| √x2+1−√x+1 | ||
lim | ||
| 1−√x+1 |
| (√x2+1−√x+1)(√X2+1+√x+1)(1+√x+1) | ||
lim | ||
| (1−√x+1)(√x2+1+√x+1)(1+√x+1) |
| √x2 + 1 − √x + 1 | ||
f(x) = | = | |
| 1 − √x + 1 |
| x2 + 1 − (x + 1) | 1 + √x + 1 | |||
= | * | = | ||
| √x2 + 1 + √x + 1 | 1 − ( x + 1) |
| x2 − x | 1 + √x + 1 | |||
= | * | = | ||
| √x2 + 1 + √x + 1 | − x |
| − x*( 1 − x) | 1 + √x + 1 | |||
= | * | = | ||
| √ x2 + 1 + √x + 1 | − x |
| (1 − x)*( 1 + √x + 1) | ||
= | ||
| √x2 + 1 + √x + 1 |
| ( 1 − 0)*( 1 + √ 0 + 1 | 1*2 | |||
lim f(x) = | = | = 1 | ||
| √90 +1 + √0 + 1 | 1 + 1 |