| 3n(n+1)(n−2) | |
| −n3+3n2+1 |
| 3n(n+1)(n−2) | |
= | |
| −n3+3n2+1 |
| 3n(n2−2n+n−2) | |
= | |
| −n3+3n2+1 |
| 3n(n2−n−2) | |
= | |
| −n3+3n2+1 |
| 3n3−3n2−6n | |
= | |
| −n3+3n2+1 |
| 3n3(1−1n−2n2) | |
= | |
| n3(−1+3n+1n3) |
| 3((1−1n−2n2) | |
→ | |
| (−1+3n+1n3) |
| 3(1−0−0) | 3*1 | ||
= | = −3 | ||
| −1+0+0 | −1 |
| 1 | 2 | 1 | 2 | |||||
3n*n(1 + | )*n(1 − | ) = 3n3(1 + | )(1 − | ) | ||||
| n | n | n | n |
| 3 | 1 | |||
n3( −1 + | + | ) | ||
| n | n3 |
| 1 | 2 | |||
3n3(1 + | )(1 − | ) | ||
| n | n |
| 3*1 | ||
lim −−−−−−−−−−−−−−−− = | = −3 | |
| −1 |
| 3 | 1 | |||
n3( −1 + | + | ) | ||
| n | n3 |
| 1 | 2 | 3 | 1 | ||||
, | , | , | → 0 przy n→ ∞ | ||||
| n | n | n | n3 |