| 2x2+6x−3 | ||
f(x)= | k:2x−y+4=0 | |
| x+1 |
| 2 x2 + 6 x − 3 | ||
f(x) = | ; x ≠ − 1 | |
| x + 1 |
| f(x) | 2 x2 +6x −3 | 2+6x− 3x2 | ||||
lim | = lim | = lim | = 2 | |||
| x | x2 +x | 1+1x |
| 2x2 + 6x − 3 | ||
lim [ f(x) − m x ] = lim [ | − 2x} = | |
| x + 1 |
| 2 x2 + 6 x − 3 − 2x*( x + 1) | ||
= lim [ | ] = | |
| x + 1 |
| 4 x − 3 | 4 − 3x | |||
= lim [ | ] = lim [ | ] = 4 | ||
| x + 1 | 1 + 1x |
| f(x) | ||
lim | = 2 | |
| x |
| f(x) | ||
Jeżeli istnieją granice właściwe lim | = m i lim ( f(x) − m x) = k, | |
| x |
| f(x) | ||
oraz lim | = m i lim ( f(x) − m x) = k | |
| x |