matematykaszkolna.pl
zbieżność szeregów Bartek: Czy da się metodą Cauchiego wyznaczyć zbieżność takich szeregów?
 1 n 

oraz ∑

 n2+1 n+1 
18 paź 16:22
Bartek: No to ja odświeżam. A czy wie ktoś jaką metodą można to policzyć? Dalambert nie, bo nie ma tu silnie. Cauchiego − to mi jakieś głupoty wychodzą. Pomysły?
18 paź 16:38
ICSP: 1. Kryterium porównawcze w postaci granicznej 2. Warunek konieczny
18 paź 16:39
ICSP: albo jeszcze prościejemotka
 1 1 

< ∑

 n2 + 1 n2 
 1 
ale ∑

jest zbieżny jako szereg harmoniczny rzędu II., zatem na mocy kryterium
 n2 
 1 
porównawczego ∑

jest szeregiem zbieżnym
 n2 + 1 
18 paź 16:42
Bartek: Dzięki, tak coś czułem, że tu o coś innego chodzi. Doczytam i przeanalizuję.
18 paź 16:50
pigor: ... d' Alembertem nie dlatego, że nie ma silni tylko dlatego,
 an+1 
że lim n→

=1; dlatego tu tylko z kryterium porównawczego. .
 an 
18 paź 16:58
pigor: ;;; no tak, znowu zająłem się czym ....innym przepraszam, zamiast nacisnąć wyślij
18 paź 17:00
Bartek: Okej, dobrze, że napisałeś. Jak sobie policzyłem, to rzeczywiście wychodzi 1.
18 paź 17:08