matematykaszkolna.pl
Wzajemne położenie dwóch prostych Code::Blak: Dany jest okrąg o środku O (−1,2) i promieniu 2. Określ wzajemne położenie tego okręgu oraz okręgu o środku S i promieniu r OK 1. O(−1,2) r1=2 |OS| = 2.5 r2=4,5 Styczne zew. |OS| = r2 + r1 2,5 = 4,5 + 2 ( nope) wew. |OS| = | r1 − r2| >0 2,5 = | 4,5 − 2 | 2,5 = 2,5 >0 Tak to ma być ?
14 paź 22:11
Code::Blak: |OS| = 2,5 r = 4,5
14 paź 22:14
5-latek: Proponuje CI jeszce raz przeczytac na glos tresc twojego zadania
14 paź 22:17
Code::Blak: no takie mam w podręczniku a ten drugi post to jest uzupełnienie do zadania
14 paź 22:18
5-latek: rysunekMasz narysowqany okrag o srodku O(−1,2) i promieniu 2 Teraz jak mamy okreslic wajejmne polozenie tego okregu wobec okregu o srodku S i promieniu r jesli nie mamy nic powiedzianie na temat tego drugiego okregu Proponuje napisac cala tresc zadania a nie wybierac jego fragmenty
14 paź 22:23
Code::Blak: Naprawdę to jest całą treść. mogę się z tobą z kontaktować jak mi nie wierzysz
14 paź 22:26
Code::Blak: cała*
14 paź 22:26
5-latek: Powiem CI tak . jesli to jest cala tresc zadania to ja sie poddaje emotka https://matematykaszkolna.pl/strona/473.html Tak sie okresla wzajemne polozenie dwoch okregow ale trzeba jeszce miec do tego drugi okrag
14 paź 22:29
Code::Blak: może spróbuj zrozumieć z moich zapisków
14 paź 22:31
Code::Blak: albo podam ci jak pierwszy przykład wyglądał
14 paź 22:32
5-latek: Poprosilem innego kolege zeby tu spojrzal
14 paź 22:39
Bogdan: r1 = 2; r2 = 4,5; |OS| = 2,5 |r1 − r2| = 2,5 = |OS| okręgi są wewnętrznie styczne
14 paź 22:49