| x | x | |||
sinx = 2sin | cos | , | ||
| 2 | 2 |
| x | x | |||
cosx = cos2( | ) − sin2( | ), | ||
| 2 | 2 |
| x | x | |||
1 = cos2( | ) + sin2( | ) | ||
| 2 | 2 |
proszę jeszcze raz o pomoc
| x | x | x | x | |||||
|cos2( | ) − sin2( | )| = (cos( | ) − sin( | ))2 | ||||
| 2 | 2 | 2 | 2 |
| π | π | |||
|cosx|=cosx dla cosx≥0 ⇔ x∊<− | +2kπ, | +2kπ> | ||
| 2 | 2 |
| √2 | ||
cosx+sinx=1 /* | ||
| 2 |
| √2 | √2 | √2 | |||
cosx+ | *sinx= | ||||
| 2 | 2 | 2 |
| π | π | √2 | ||||
sin( | ) cosx+cos( | )*sinx= | ⇔ | |||
| 4 | 4 | 2 |
| π | √2 | π | π | |||||
sin( | +x)= | i x∊<− | +2kπ, | +2kπ> | ||||
| 4 | 2 | 2 | 2 |
| π | ||
x=0+2kπ lub x= | +2kπ | |
| 2 |
| π | 3π | |||
2) |cosx|=−cosx dla x∊( | , | |||
| 2 | 2 |
| √2 | ||
sinx−cosx=1 /* | ||
| 2 |
| √2 | √2 | √2 | |||
sinx− | cosx= | ||||
| 2 | 2 | 2 |
| π | π | √2 | ||||
sinx*cos( | −sin( | *cosx= | ⇔ | |||
| 4 | 4 | 2 |
| π | √2 | π | 3π | |||||
sin(x− | )= | i x∊( | , | |||||
| 4 | 2 | 2 | 2 |