matematykaszkolna.pl
. asdf: 23 + 43 + .. + (2n)3 = 2(2 + 4 + ... + 2n)2 dla n + 1: 23 + 43 + ... + (2n)3 + (2n+2)3 = 2(2 + 4 + ... + 2n + 2n + 2)2 2(2+4 + ... + 2n)2 + (2n+2)3 = 2(2 + 4 + .. + 2n + 2n + 2)2 2(2(1+2+..+n))2 + (2n+2)3 = 8(1+2+...+n)2 + (2(n+1))3 = 8(1+2+...+n)2 + 8(n+1)3 =
 n(n+1) 
8( (

)2 + (n+1)3) =
 2 
 n2(n+1)2 
8(

+ (n+1)3) =
 4 
 n2(n+1)2 + 4(n+1)(n+1)2 
8(

) =
 4 
2( (n+1)2 + (n2 + 4n +4)) = 2((n+1)2 + (n+2)2) = 2(2 + 4 + .. + 2n + 2n + 2)2 = 2(2(1+2+...+n+n+1))2 =
 n(n+1) 
8((

+ n+1)2 =
 2 
 n(n+1) + n+1 
8((

)2 =
 2 
2((n2+2n+2)) = 2(n+1)2
11 paź 02:56
asdf:
 n2(n+1)2 + 4(n+1)(n+1)2 
8(

) =
 4 
2( (n2(n+1)2 + 4(n+1)(n+1)2) = 2( (n+1)2(n2 + 4n+4)) = 2(n+1)2(n+2)2 a lewa strona to: 2(2+4+...+2n+2n+2)2 =
 n(n+1) 2n +2 
8(1+...+(n+1)2) = 8(

+

)2 =
 2 2 
2(n(n+1) + 2n + 2)2 = 2(n2 + n +2n + 2)2 = 2(n(n+1) + 2(n+1))2 = 2((n+1)(n+2))2 = 2(n+1)2(n+2)2
11 paź 03:02