.
asdf:
2
3 + 4
3 + .. + (2n)
3 = 2(2 + 4 + ... + 2n)
2
dla n + 1:
2
3 + 4
3 + ... + (2n)
3 + (2n+2)
3 = 2(2 + 4 + ... + 2n + 2n + 2)
2
2(2+4 + ... + 2n)
2 + (2n+2)
3 = 2(2 + 4 + .. + 2n + 2n + 2)
2
2(2(1+2+..+n))
2 + (2n+2)
3 =
8(1+2+...+n)
2 + (2(n+1))
3 =
8(1+2+...+n)
2 + 8(n+1)
3 =
| | n(n+1) | |
8( ( |
| )2 + (n+1)3) = |
| | 2 | |
| | n2(n+1)2 | |
8( |
| + (n+1)3) = |
| | 4 | |
| | n2(n+1)2 + 4(n+1)(n+1)2 | |
8( |
| ) = |
| | 4 | |
2( (n+1)
2 + (n
2 + 4n +4)) =
2((n+1)
2 + (n+2)
2) =
2(2 + 4 + .. + 2n + 2n + 2)
2 =
2(2(1+2+...+n+n+1))
2 =
2((n
2+2n+2)) = 2(n+1)
2