EB⊥AD
środkowe dzielą się w stosunku 2:1 licząc od wierzchołka
ΔDSB,ΔESA,ASB są prostokątne.
x2+(2y)2=82
y2+(2x)2=62
x2+4y2=64
4x2+y2=36 stąd y2=36−4x2
Podstawiamy do pierwszego
x2+4(36−4x2)=64
| 80 | 16 | |||
stąd x2= | = | |||
| 15 | 3 |
| 16 | ||
x2= | ||
| 3 |
| 16 | |
+4y2=64 /:4 | |
| 3 |
| 4 | |
+y2=16 | |
| 3 |
| 44 | ||
y2= | ||
| 3 |
| 44 | 16 | |||
c2=4* | +4* | |||
| 3 | 3 |
| 44 | 16 | |||
c2=4*( | + | ) | ||
| 3 | 3 |
albo
a2 + 4b2 = 36
4a2 + b2 = 64
+ −−−−−−−−−−−−
| 4 | ||
5a2 + 5b2 = 100 /* | ⇒ 4a2 + 4b2 = 80 = c2 ⇒ c = √80 = 4√5 | |
| 5 |
| 320 | ||
4x2+y2=36 /*4 ⇒ 16x2+4y2=144 ⇒ 16x2+64−x2=144 ⇒ 15x2=80 ⇒4x2= | ||
| 15 |
| 20 | 880 | |||
to: 4y2=64− | ⇒ 4y2= | |||
| 80 | 15 |
| 880+320 | ||
c2=4x2+4y2 ⇒ c2= | = 80 ⇒ c=√80= 4√5 | |
| 15 |