| 1 | 1 | 1 | |||
+ | + | ||||
| log225 | log225 | log325 |
pomoże ktoś?
| 1 | ||
log25 = a ⇔ log52 = | ||
| a |
| 1 | 1 | 1 | 3 | |||||
log3125 = b ⇔ log1253 = | ⇔ | log53 = | ⇔ log53 = | |||||
| b | 3 | b | b |
| 1 | 1 | 1 | ||||
log2512 = | log512 = | (log54 +log53) = | (2log52 + log53) = | |||
| 2 | 2 | 2 |
| 1 | 2 | 3 | 3a + 2b | ||||
( | + | ) = | |||||
| 2 | a | b | 2ab |
nie wiem z jakim wzorem się to łączy...
| log255 | log255 | |||
log25= | czyli log252= | czyli | ||
| log{25}2 | a |
| 2*log255 | 1 | |||
2*log252= | = | |||
| a | a |
| log25125 | log5125 | 3 | ||||
log3125= | = | :log253= | czyli | |||
| log{25}3 | log525 | 2log253 |
| 3 | ||
log253= | ||
| 2b |
| 3 | 1 | 3a+2b | ||||
log2512=log253+2log252= | + | = | ||||
| 2b | a | 2ab |
| log5 | log5 | ||
=a ⇒log2= | |||
| log2 | a |
| 3log5 | 3log5 | ||
=b ⇒log3= | |||
| log3 | b |
| log12 | 2log2+log3 |
| ||||||||||||||||
log2512= | = | = | = | |||||||||||||||
| log25 | 2log5 | 2log5 |
| 3a+2b | |||||||||||||||
= | = | |||||||||||||||
| 2 | 2ab |
| 1 | log4 | |||
(log410)−1= | = | = log4 | ||
| log410 | log10 |
| log10 | ||
log410= | ||
| log4 |