Pomocy
Wrra: wykaż że
| | 1 | |
log220 * log25 + 1 = |
| |
| | log2 2 | |
28 wrz 21:11
john2: zamień log220 na (log210 + log22)
28 wrz 21:24
AcidRock: | | 10 | |
L = log220 × log25 + 1 = log2(10 × 2) × log2 |
| + 1 = (log210 + 1)(log210 − 1) + 1 = |
| | 2 | |
| | 1 | |
log2210 − 1 + 1 = |
| = P |
| | log22 | |
28 wrz 21:30
Eta:
1= log
222 , log
220= log
25+log
24= log
25+2log
22
(log
25+2log
22)*log
25 +log
222= log
52+2*log
25*log
22+log
222=
| | log10 | | 1 | |
= (log25+log22)2= (log210 )2= ( |
| )2= |
| =P |
| | log2 | | log22 | |
28 wrz 21:33