| |x0 + Δx| − |x0| | |0 + Δx| − |0| | |||
limΔx−>0 | = limΔx−>0 | = | ||
| Δx | Δx |
| |Δx| | ||
= limΔx−>0 | ||
| Δx |
| |Δx| | −Δx | |||
limΔx−>0− | = limΔx−>0− | = −1 | ||
| Δx | Δx |
| |Δx| | Δx | |||
limΔx−>0+ | = limΔx−>0+ | = 1 | ||
| Δx | Δx |
| 1 | 1 | 2x | ||||
(|x|)' = (√x2)' = | * (x2)' = | * 2x = | = | |||
| 2√x2 | 2√x2 | 2√x2 |
| x | x | |||
= | = | |||
| √x2 | |x| |
| x | ||
Tak ...(IxI)' = | ||
| IxI |