| π | ||
Oblicz tg x, wiedząc, że x ≠ | + kπ, gdzie k ∊ C, oraz | |
| 2 |
| π | 2 | |||
a) sin {x − | } = | cos x | ||
| 6 | 3 |
| π | ||
b) cos x * cos{ x + | } = sin 2x | |
| 4 |
| π | √3 | 1 | ||||
sin(x− | )= | *cosx+ | *sinx | |||
| 6 | 2 | 2 |
| 1 | 2 | √3 | 2 | π | ||||||
sinx= | cosx− | cosx / * | ≠0 , bo x≠ | |||||||
| 2 | 3 | 2 | cosx | 2 |
| sinx | ||
otrzymasz | =tgx=........... | |
| cosx |
| π | ||
cos(x+ | )= 2sinx | |
| 4 |
| π | ||
cos(x+ | ) =...... zastosuj wzór cos(α+β)=... | |
| 4 |