| ctg5x | ||
limx−−>0 | z hospitala bo ∞/∞ | |
| ctgx |
| (ctg5x)' |
| ||||||||||||
limx−−>0 | = limx−−>0 | ||||||||||||
| (ctgx)' |
|
| 5 | 1 | ||||||||||
limx−−>0 | = | * ( | ) | |||||||||
| sin25x) | sin2x |
| 5 | sin2x | |||||||||
= | * | = | |||||||||
| sin2(5x) | 1 |
| 5sin2x | 0 | ||
→ [ | ] i drugi raz reguła H | ||
| sin2(5x) | 0 |
| cos5x | ||
ctg5x= | ||
| sin5x |
| cosx | ||
ctgx= | ||
| sinx |
| ctg5x |
| cos5x*sinx | |||||||||
= | = | =* | |||||||||
| ctgx |
| cosx*sin5x |
| cos5x | ||
limx→0 | =1 | |
| cosx |
| sinx | 1 | |||
*= | = | |||
| sin5x | 5 |
| ctg5x | (ctg5x)' | |||
limx−−>0 | = | |||
| ctgx | (ctgx)' |
| 5 | sin2x | |||
limx−−>0 | * | |||
| sin25x | 1 |
| 5sin2x | ||
limx−−>0 | ||
| sin25x |
| (5sin2x)' | 10cosxcosx | |||
limx−−>0 | = | |||
| (sin25x)' | 2cos5x*cosx*5 |
| 5sin2x | 10sinx*cosx | |||
limx→0 | =H limx→0 | = | ||
| sin(5x) | 10sin(5x)cos(5x) |
| sinx*cosx | ||
limx→0 | = | |
| sin(5x)*cos(5x) |
| 12*2sinx*cosx | ||
limx→0 | = | |
| 12*2sin(5x)*cos(5x) |
| sin(2x) | ||
limx→0 | =H | |
| sin(10x) |
| 2cos(2x) | 2*cos0 | 2 | 1 | |||||
limx→0 | = | = | = | |||||
| 10cos(10x) | 10*cos0 | 10 | 5 |
| ctg5x |
| ||||||||
= | = | ||||||||
| ctgx |
|
| cos5x | sinx | ||
* | = | ||
| sin5x | cosx |
| cos5x | sinx | ||
* | = | ||
| cosx | sin5x |
| cos5x | 5x*sinx | ||
* | = | ||
| cosx | 5x*sin5x |
| cos5x | 5x | 1 | sinx | cos0 | 1 | ||||||
* | * | * | → przy x→0 | *1* | *1 = | ||||||
| cosx | sin5x | 5 | x | cos0 | 5 |
| 1 | ||
| 5 |
| sinx | x | |||
zakładam, że wiesz, że limx→0 | = limx→0 | = 1 | ||
| x | sinx |