| 5x2−12 | ||
∫ | dx | |
| (x2−6x+13)2 |
| 5x2−12 | 5x2−12 | |||
∫ | dx=∫ | dx= | ||
| (x2−6x+13)2 | ((x−3)2+4)2 |
| 5(2t+3)2−12 | ||
=2∫ | dt= | |
| (4t2+4)2 |
| 20t2+60t+33 | 1 | (20t2+20)+(60t+13) | ||||
=2*∫ | dt= | ∫ | dt= | |||
| 16*(t2+1)2 | 8 | (t2+1)2 |
| 5x2−12 | 5x2−30x+65+30x−77 | ||
= | = | ||
| (x2−6x+13)2 | (x2−6x+13)2 |
| 5(x2−6x+13)+30x−77 | 5 | 30x−77 | ||||
= | = | + | = | |||
| (x2−6x+13)2 | (x2−6x+13) | (x2−6x+13)2 |
| 5 | 30x−90+13 | |||
= | + | = | ||
| (x2−6x+13) | (x2−6x+13)2 |
| 5 | 2x−6 | 13 | ||||
= | +15 | + | ||||
| (x2−6x+13) | (x2−6x+13)2 | (x2−6x+13)2 |
| 5x2−12 | 5x2−12 | |||
∫ | dx= ∫ | dx= | ||
| (x2−6x+13)2 | (x2−6x+9+4)2 |
| 5x2−12 | 5x2−12 | |||
= ∫ | dx= 14 ∫ | dx= | ||
| (x−3)2+4)2 | ((x−32)2+1)2 |
| 5(2t+3)2−12 | ||
= | niech x−32= t ⇒ x=2t+3 ⇒ dx=2dt |= 14 ∫ | = | |
| (t2+1)2 |
| 20t2+60t+33 | ||
= 24 ∫ | dt =... | |
| (t2+1)2 |
| A | B | |||
= 12 ( | + | ) i td. ... ![]() | ||
| t2+1 | (t2+1)2 |