równanie stycznych do okręgu przechodzących przez punkt
anetta: witam

mam napisać równania ogólne stycznych do danego okręgu o i przechodzących przez punkt A:
x
2+y
2−6x+8y+21=0, A(5−1)
czyli to jest (x−3)
2+(y+4)
2=4
y=ax+b (podstawiam A i wyliczam b):
b=−5a−1
y=ax−5a−1 by mieć jedną zmienną
−ax+y+5a+1=0
wyliczam d=
|8a+5|√a2+1
porównuję z promieniem:
|8a+5|√a2+1 = 2
ostatecznie otrzymuję:
4a
2−12a+9=4a
2+4
a tak nie może być, bo nie będę miała kwadratowego równania i nie otrzymam dwóch stycznych
pomocy?

z góry ładnie dziękuję