| √x | ||
y' = (2arccos | − √3x − 2x2)' | |
| 2 |
| √x | ||
= (2arcos | )' − (√3x − 2x2)' | |
| 2 |
| √x | 1 | |||
= 2(arccos | )' − | * (3x − 2x2)' | ||
| 2 | 2√3x − 2x2 |
| 1 | 1 | ||||||||||||
= 2(− | )*(U{√x{2})' − | * [(3x)' − (2x2)'] | |||||||||||
| 2√3x−2x2 |
| 1 | 1 | 1 | |||||||||||||
= 2(− | ) * ( | − | * (3 − 4x) | ||||||||||||
| 4√x | 2√3x − 2x2 |
| 1 | 1 | 1 | |||||||||||||
= 2(− | ) * | − | * (3x − 4x) | ||||||||||||
| 4√x | 2√3x − 2x2 |
| 1 | 3 − 4x | |||
y' = − | − | |||
| √x(4 − x) | 2√3x − 2x2 |
| −2 | 1 | ||
* | = | ||
| √1−x4 | 4√x |
| −2 | ||
= | = | |
| √1−x4 * 4√x |
| −1 | ||
= | = | |
| √1−x4 * 2√x |
| −1 | ||
= | = | |
| √1−x4 * √4 * √x |
| −1 | ||
= | = | |
| √(1−x4) * 4 * x |
| −1 | ||
= | ||
| √x(4− x) |
| 1 | 1 | ||||||||||||
2(− | ) * | ||||||||||||
| 4√x |
| x | x | x | ||||
pod pierwiastkiem jest (1 − | ) * 4 * x, czyli (1 − | )4x, czyli 4x(1 − | ) | |||
| 4 | 4 | 4 |