z.2
Mamy
V = a2 *h = 16
Pb = 4a*h = 32
więc
| a2 h | 16 | 1 | |||
= | = | ||||
| 4a*h | 32 | 2 |
| a | 1 | ||
= | ⇒ a = 2 | ||
| 4 | 2 |
| 32 | 4 | |||
cos α = | = | |||
| 40 | 5 |
| 34 | 17 | |||
Mnie też w z. 1 wyszło cos α = | = | |||
| 70 | 35 |
Scisny boczne sa przystającymi trójkatami równoramiennymi:
AF⊥SB i CF⊥SB
α− kat między ścianami bocznymi
| 1 | ||
PΔABS= | *a*hb | |
| 2 |
| 1 | ||
(3a)2=( | a)2+(hb)2 | |
| 2 |
| 35 | a√35 | |||
hb2= | a2 stad hb= | |||
| 4 | 2 |
| 1 | a√35 | |||
PΔABS= | *a* | ⇔ | ||
| 2 | 2 |
| a2√35 | ||
PΔABS= | ||
| 4 |
| 1 | ||
PΔABS= | *3a*h | |
| 2 |
| 1 | a2√35 | ||
*3a*h= | |||
| 2 | 4 |
| a√35 | ||
stąd h= | ||
| 6 |
| a√35 | a√35 | a√35 | a√35 | |||||
a2=( | )2+( | )2−2*( | )*( | )*cosα⇔ | ||||
| 6 | 6 | 6 | 6 |
| 35 | 35 | 35 | ||||
a2= | a2+ | a2−2* | a2*cosα | |||
| 36 | 36 | 36 |
| 70 | 70 | |||
a2= | a2− | a2*cosα /:a2, | ||
| 36 | 36 |
| 34 | 70 | ||
= | *cosα | ||
| 36 | 36 |
| 34 | 17 | |||
cosα= | = | |||
| 36 | 35 |
| 34 | ||
cosα= | ⇔ | |
| 70 |
| 17 | ||
cosα= | ||
| 35 |
Zadanie 1. Można rozwiązać także w ten sposób:
| a | c | a | ||||
h = a√3, | = | ⇒ c = | , | |||
| 6a | 2a | 3 |
| 26 | ||
k2 = h2 − c2 = 3a2 − c2 = | a2 | |
| 9 |
| k2 | 2k2−k2−a2 | k2 − a2 | ||||
cos2α = 2cos2α−1 = 2* | − 1 = | = | = | |||
| w2 | k2+a2 | k2 + a2 |
| 17a2 | 17 | ||||||||||
= | = | = | ||||||||||
| 35a2 | 35 |
Zadanie 3.
A = (1, 4), B = (5, 2), C = (xC, yC), D = (cD, yD), xc, yC, xD, yD > 0
| 1 | ||
prosta AB: y = a1x + b1, a1 = − | ||
| 2 |
| yC − 2 | ||
a2 = | = 2 ⇒ (yC − 2) = 2(xC − 5) ⇒ yC = 2(xC − 5) + 2 | |
| xC − 5 |
| yD − 4 | ||
Analogicznie obliczmy współrzędne punktu D: a3 = | = 2 ⇒ (yD − 4) = ... | |
| xD − 1 |
prosta BC : y=a2x+b2