n−1)![]() | ||
∫0πsinnx= dla n−nieparzyste | ||
n![]() |
n−1)![]() | ||
dla n parzyste | *π | |
n![]() |
| 2 | ||
∫0π sin3x= | ||
| 3 |
| 4 | ||
a wolfram mówi | ||
| 3 |
| 1 | ||
=−∫(1−t2)dt=∫(t2−1) dt= | t3−t=U{1}[3}cos3x−cosx+C | |
| 3 |
| 1 | 1 | 1 | 1 | 4 | ||||||
0∫π(sin3x)dx= | cos3π−cosπ− | cos30+cos0=− | +1− | +1= | ||||||
| 3 | 3 | 3 | 3 | 3 |
| n − 1 | ||
In = | In − 2 | |
| n |
| n − 1 | n − 3 | |||
In = | * | * In − 4 = ... | ||
| n | n − 2 |
| (n − 1)! ! | 2(n − 1)! ! | |||
In = | * I1 = | |||
| n! ! | n! ! |