| π | ||
sinx−sin(x− | ) = 0 | |
| 3 |
| π | 3 | |||
cos(x+ | )+cosx = | |||
| 3 | 2 |
|
| |||||||||||||||||||||
2sin | *cos | =0 | ||||||||||||||||||||
| 2 | 2 |
| π | π | |||
2sin | *cosx− | = 0 | ||
| 6 | 6 |
| π | ||
cos(x− | =0 | |
| 6 |
| π | π | |||
x= | + | +2kπ | ||
| 6 | 2 |
| 2π | ||
x= | +2kπ | |
| 3 |
| π | π | |||
Ad 1) ... jeszcze : x − | = − | + 2kπ | ||
| 6 | 2 |
| 2π | π | |||
no to mam jeszcze x=− | +2kπ =− | +2kπ | ||
| 6 | 3 |
| 2 | ||
w odpowiedziach jest : | π+kπ | |
| 3 |
| 2 | ||
To jest tylko inny zapis... ale katy te same. W odpowiedzi masz: | π + kπ, | |
| 3 |
| π | π | π | 2 | |||||
bo cosx = 0 ⇔ x = | +kπ , czyli: x − | = | + kπ ⇔ x = | π + kπ | ||||
| 2 | 6 | 2 | 3 |
| π | π | 3 | π | √3 | 3 | |||||||
Ad 2) ⇔ 2cos(x+ | )cos(− | ) = | ⇔ 2cos(x+ | ) | = | ⇔ | ||||||
| 6 | 6 | 2 | 6 | 2 | 2 |
| π | √3 | |||
cos(x+ | ) = | |||
| 6 | 2 |