| 1 | 1 | 1 | |||
+ | + | ||||
| a(a−b)(a−c) | b(b−a)(b−c) | c(c−a)(c−b) |
| 1 | 1 | ||
{ | = | ||
| a(a−b)(a−c) | b(b−a)(b−c) |
| b(b−c) | a(a−c) | ||
− | = | ||
| ab(a−b)(a−c)(b−c) | ab(a−b)(b−c)(a−c) |
| b2−bc−a2+ac | |
= | |
| ab(a−b)(b−c)(a−c) |
| b2−a2−bc+ac | |
= | |
| ab(a−b)(b−c)(a−c) |
| b−a)(b+a)−c(b−a) | |
= | |
| ab(a−b)(b−c)(a−c) |
| (b−a)(b+a−c) | |
= | |
| ab(a−b)(b−c)(a−c) |
| a−b)(−b−a+c | |
= | |
| ab(a−b)(b−c)(a−c) |
| (a−b)(c−b−a) | |
= | |
| ab(a−b)(b−c)(a−c) |
| c−b−a | |
| ab(b−c)(a−c) |
| c−b−a | 1 | |||
Teraz dodaje | + | |||
| ab(b−c)(a−c) | c(c−a)(c−b) |
| c(c−b−a)+ab | |
= | |
| abc(b−c)(a−c) |
| c2−cb−ca+ab | |
= | |
| abc(b−c)(a−c) |
| c(c−b)−a(c−b) | |
= | |
| abc(b−c)(a−c) |
| (c−b)(c−a) | |
= teraz moge napisac ze (c−b)(c−a)=(b−c)(a−c) | |
| abc(b−c)(a−c) |
| (b−c)(a−c) | 1 | ||
= | Uffffff. | ||
| abc(b−c)(a−c) | abc |
| 1 | 1 | 1 | |||
+ | + | = | |||
| a(a−b)(a−c) | b(b−a)(b−c) | c(c−a)(c−b) |
| 1 | 1 | 1 | ||||
= | − | + | = | |||
| a(a−b)(a−c) | b(a−b)(b−c) | c(a−c)(b−c) |
| bc(b−c)−ac(a−c)+ab(a−b) | ||
= | = | |
| abc(a−b)(b−c)(a−c) |
| b2c−bc2−a2c+ac2+ab(a−b) | ||
= | = | |
| abc(a−b)(b−c)(a−c) |
| c2(a−b)−c(a−b)(a+b)+ab(a−b) | ||
= | = | |
| abc(a−b)(b−c)(a−c) |
| (a−b)(c2−ca−cb+ab) | ||
= | = | |
| abc(a−b)(b−c)(a−c) |
| (a−b)(−c(b−c)+a(b−c)) | (a−b)(b−c)(a−c) | |||
= | = | = | ||
| abc(a−b)(b−c)(a−c) | abc(a−b)(b−c)(a−c) |
| 1 | ||
i ... uciekło, więc tylko ...= | i abc≠0 i a≠b i b≠c i c≠a . | |
| abc |
czyli wynik ten sam .
fakt Twoim sposobem mniej liczenia ale wiesz przerazilem sie tego ze moge sie pomylic w
obliczeniach gdy sprowadze to od razu do wspolnego mianownika
cóż to za potwory do liczenia
Z radzieckiego zbioru zadan
| 1+(a+x)−1 | 1−(a2+x2) | ||
*(1− | ) | ||
| 1−(a+x)−1 | 2ax |
| (a+x+1)2 | ||
Wyszsedl mi wynik | ||
| 2ax |
| 1 | ||
Jeszce nalezalo po uposzceniu podstawic x= | ||
| a−1 |
| (a+1+1a−1)2 | ||
...= | i rozszerzam to wyrażenie przez | |
| 2aa−1 |
| (a−1)2(a+1+1a−1)2 | (a2−1+1)2 | |||
(a−1)2 i otrzymuję = | = | = | ||
| 2a(a−1) | 2a(a−1) |
| a3 | ||
= | i a≠1. ![]() | |
| 2(a−1) |
tez mi tyle wyszlo .