| a−1 | 2(a−1) | 4(a+1) | a | |||||
( | + | − | + | )* | ||||
| a2−2a+1 | a2−4 | a2+a−2 | a2−3a+2 |
| 36a3−144a−36a2+144 | ||
| a3+27 |
| a−1 | 2(a−1) | 4(a+1) | a | ||||
+ | − | + | = | ||||
| (a−1)2 | (a−2)(a+2) | (a+2)(a−1) | (a−1)(a−2) |
| 1 | 2(a−1) | 4(a+1) | a | ||||
+ | − | + | = | ||||
| a−1 | (a−2)(a+2) | (a+2)(a−1) | (a−1)(a−2) |
| (a−2)(a+2)+2(a−1)(a−1)−4(a+1)(a−2)+a(a+2) | |
= po uporzedkowaniu | |
| (a−1)(a+2)(a−2) |
| 2a+6 | 2(a+3) | ||
= | |||
| (a−1)(a+2)(a−2) | (a−1)(a+2)(a−2) |
| 36a3−144a−36a2+144 | ||
Teraz wyrazenie | gdzie a3+27 nie rowna sie 0 | |
| a3+27 |
| 36a2(a−1)−144(a−1) | |
= | |
| a3+27 |
| (a−1)(36a2−144) | |
= | |
| a3+27 |
| (a−1)(6a−12)(6a+12) | |
= | |
| a3+27 |
| (a−1)6(a−2)6(a+2) | |
= | |
| a3+27 |
| (36(a−1)(a−2)(a+2) | |
| (a+3)(a2−3a+9) |
| 2(a+3) | 36(a−1)(a+2)(a−2) | ||
* | = | ||
| (a−1)(a+2)(a−2) | (a+3)(a2−3x+9 |
| 72 | |
| a2−3a+9 |
| 2(a+3) | ||
Ten nawias z * też mi wyszło | ||
| (a−1)(a+2)(a−2) |