y'+y/2x=1/2x2
czyli mam dy/dx+y/2x=1/2x2
I co robię dalej ktoś by mógł wytłumaczyć krok po kroku?
To jest chyba Bernoullego ale kompletnie nie wiem jak to dalej ruszyc.
?
| 1 | 1 | |||
y'+ | y = | y2 | ||
| 2x | 2 |
| 1 | ||
y'+ | y = 0 | |
| 2x |
| dy | −y | ||
= | |||
| dx | 2x |
| dy | −dx | ||
= | |||
| y | 2x |
| 1 | ||
lny=− | lnx+lnC, C>0 | |
| 2 |
| C | ||
y = | − całka ogólna | |
| √x |
| C'(x) | C(x) | |||
y' = | − | |||
| √x | 2√x3 |
| C'(x) | 2 C(x) | C | 1 | ||||
− | + | = | x2 | ||||
| √x | 2√x3 | 2 √x3 | 2 |
| C'(x) | 1 | ||
= | x2 | ||
| √x | 2 |
| 1 | ||
C'(x) = | √x7 | |
| 2 |
| 1 | ||
C(x) = | * x72 + D | |
| 7 |
| 1 | 1 | 1 | ||||
y = | * x72* | + E = | x3 +E − całka szczególna | |||
| 7 | √x | 7 |
| 3 | ||
y' = | x2 | |
| 7 |
| 3 | x3 | 6 | 1 | 7 | 1 | ||||||
x2 + | = [ | + | ]x2 = | x2 = | x2 | ||||||
| 7 | 14x | 14 | 14 | 14 | 2 |
| C(x) | C(x) | |||
... − | + | = ... | ||
| 2√x3 | 2√x3 |
| 1 | ||
C'(x) = | √x5, wtedy | |
| 2 |
| 1 | 2 | |||
C(x) = | √x7 | |||
| 2 | 7 |
| 1 | E | |||
y = | x3 + | |||
| 7 | √x |