matematykaszkolna.pl
Obliczyć pochodne cząstkowe drugiego rzędu: Daniel: Obliczyć pochodne cząstkowe drugiego rzędu: f(x,y)= yex2y
3 lip 23:49
o nie: w sensie drugie pochodne cząstkowe ?
d2 d2 d2 

i

i

?
dx2 dy2 dxdy 
 df df 
licz po kolei pochodne

i

a potem te wyżej
 dx dy 
pochodne po ygreku wymagają wzorku na pochodną iloczynu. Jakiś problem z tą pochodną ?
4 lip 00:04
J: f'x = yex2y2xy = 2y2xex2y f'y = ex2y + yex2yx2 = ex2y(1 + x2y) f'xx = 2y2(ex2y + xex2y2xy) = 2y2ex2y(1 + 2x2y) .... dalej licz sam
4 lip 09:25
Dziadek Mróz: f(x, y) = yex2y y = f(x, y) y = yex2y y = uv u = y v = ez z = jk j = x2 k = y
d d d d 

y =

[uv] = v

u + u

v = (1) ...
dx dx dx dx 
d d 

u =

[y] = 0
dx dx 
d d d 

v =

[ez] = ez *

z = (2) ...
dx dx dx 
d d d d 

z =

[jk] = k

j + j

k = (3) ...
dx dx dx dx 
d d 

j =

[x2] = 2x
dx dx 
d d 

k =

[y] = 0
dx dx 
... (3) = y2x = 2xy ... (2) = ex2y * 2xy = 2xyex2y ... (1) = y2xyex2y = 2xy2ex2y
4 lip 10:30
J: Leć dalej... sprawdzę, czy się nie pomyliłem... na razie f'x mamy tak samo...emotka
4 lip 10:32
Dziadek Mróz: z tych samych zmiennych:
d d d d 

y =

[uv] = v

[u] + u

[v] = (1) ...
dy dy dy dy 
d d 

u =

[y] = 1
dy dy 
d d d 

v =

[ez] = ez *

z = (2) ...
dy dy dy 
d d d d 

z =

[jk] = k

[j] + j

[k] = (3) ...
dy dy dy dy 
d d 

j =

[x2] = 0
dy dy 
d d 

k =

[y] = 1
dy dy 
... (3) = x2 ... (2) = ex2y * x2 = x2ex2y ... (1) = ex2y + yx2ex2y = ex2y(1 + x2y) =====================================================================
 d 
y =

f(x, y)
 dx 
y = 2xy2ex2y y = 2uv u = xy2 v = ez z = x2y
d d d d d 

y =

[2uv] = 2

[uv] = 2(v

[u] + u

[v]) = (1) ...
dx dx dx dx dx 
d d d 

u =

[xy2] = y2

[x] = y2
dx dx dx 
d d d 

v =

[ez] = ez *

[z] = (2) ...
dx dx dx 
d d d 

z =

[x2y] = y

[x2] = 2xy
dx dx dx 
... (2) = ex2y * 2xy = 2xyex2y ... (1) = 2(ex2yy2 + xy22xyex2y) = 2(y2ex2y + 2x2y3ex2y) = = 2y2ex2y(1 + 2x2y) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d d d d 

y = ... = 2

[uv] = 2(v

[u] + u

[v]) = (1) ...
dy dy dy dy 
d d d 

u =

[xy2] = x

[y2] = 2xy
dy dy dy 
d d d 

v =

[ez] = ez *

[z] = (2) ...
dy dy dy 
d d d 

z =

[x2y] = x2

[y] = x2
dy dy dy 
... (2) = ex2y * x2 = x2ex2y ... (1) = 2(ex2y2xy + xy2x2ex2y) = 2(2xyex2y + x3y2ex2y) = = 2xyex2y(2 + x2y) =====================================================================
 d 
y =

f(x, y)
 dy 
y = ex2y(1 + x2y) y = uv u = ez v = 1 + x2y z = x2y
d d d d 

y =

[uv] = v

[u] + u

[v] = (1) ...
dx dx dx dx 
d d d 

u =

[ez] = ez *

[z] = (2) ...
dx dx dx 
d d d 

v =

[1 + x2y] =

[x2y] = 2xy
dx dx dx 
d d 

z =

[x2y] = 2xy
dx dx 
... (2) = ex2y2xy = 2xyex2y ... (1) = (1 + x2y)2xyex2y + ex2y2xy = 2xyex2y(2 + x2y) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d d d d 

y =

[uv] = v

[u] + u

[v] = (1) ...
dy dy dy dy 
d d d 

u =

[ez] = ez *

[z] = (2) ...
dy dy dy 
d d d 

v =

[1 + x2y] =

[x2y] = x2
dy dy dy 
d d 

z =

[x2y] = x2
dy dy 
... (2) = ex2yx2 = x2ex2y ... (1) = (1 + x2y)x2ex2y + ex2yx2 = x2ex2y(2 + x2y) ===================================================================== ===================================================================== =====================================================================
d 

f(x, y) = 2xy2ex2y
dx 
d 

f(x, y) = ex2y(1 + x2y)
dy 
d2 

f(x, y) = 2y2ex2y(1 + 2x2y)
dx2 
d2 

f(x, y) = 2xyex2y(2 + x2y)
dxdy 
d2 

f(x, y) = x2ex2y(2 + x2y)
dy2 
d2 

f(x, y) = 2xyex2y(2 + x2y)
dydx 
4 lip 15:15
Dziadek Mróz: Pisałem jak wynikało bez sprawdzania
4 lip 15:15