| 1 | 1 | 1+ctg2x | |||
+ | = | ||||
| sin2x | cos2x | cos2x |
| 1+ctg2x | cos2x | 1 | ||||
P= | = 1+ | * | = | |||
| cos2x | sin2x | cos2x |
| a+b | a | b | ||||
..., źle zacząłeś , przecież | = | + | , a więc tu | |||
| c | c | c |
| 1 | ctg2x | 1 | cos2x | |||||
P= | + | = | + | = | ||||
| cos2x | cos2x | cos2x | sin2x*cos2x |
| 1 | 1 | |||
= | + | = L co należało wykazać . ... ![]() | ||
| cos2x | sin2x |
| cos2x+sin2x |
| ||||||||||||
L= | = | = | |||||||||||
| sin2xcos2x | sin2xcos2x |
| ctg2x+1 | |||||||||
= | = | = P. ... ![]() | ||||||||
| cos2x | cos2x |