Oblicz drugą pochodną f(x)= x / x−2
| x | ||
f(x) = | ; x ≠ 2 | |
| x − 2 |
| 1*( x − 2) − x*1 | − 2 | |||
f' (x) = | = | |||
| ( x − 2)2 | ( x − 2)2 |
| 0*( x −2)2 − (−2)*(2 x − 4) | 4 x − 8 | |||
f" (x) = | = | |||
| ( x − 2)4 | ( x − 2)4 |
| x | ||
f(x) = | ; x ≠ 2 | |
| x − 2 |
| 1*( x − 2) − x*1 | − 2 | |||
f' (x) = | = | |||
| ( x − 2)2 | ( x − 2)2 |
| 0*( x −2)2 − (−2)*(2 x − 4) | 4 x − 8 | |||
f" (x) = | = | = | ||
| ( x − 2)4 | ( x − 2)4 |
| 4 | ||
= | ||
| ( x − 2)3 |
| x | ||
f(x) = | ; x ≠ 2 | |
| x − 2 |
| 1*( x − 2) − x*1 | − 2 | |||
f' (x) = | = | |||
| ( x − 2)2 | ( x − 2)2 |
| 0*( x −2)2 − (−2)*(2 x − 4) | 4 x − 8 | |||
f" (x) = | = | = | ||
| ( x − 2)4 | ( x − 2)4 |
| 4 | ||
= | ||
| ( x − 2)3 |
| x | ||
y = | ||
| x − 2 |
| u | ||
y = | u = x v = x − 2 | |
| v |
| u | u'v − uv' | |||
y' = [ | ]' = | = (1) ... | ||
| v | v2 |
| 1(x − 2) − x*1 | x − 2 − x | 2 | ||||
... (1) = | = | = − | ||||
| (x − 2)2 | (x − 2)2 | (x − 2)2 |
| 2 | ||
y' = − | ||
| (x − 2)2 |
| u | ||
y' = | u = −2 v = z2 z = x − 2 | |
| v |
| u | u'v − uv' | |||
y'' = [ | ]' = | = (2) ... | ||
| v | v2 |
| 0*(x − 2)2 + 2*2(x − 2) | 4(x − 2) | 4 | ||||
... (2) = | = | = | ||||
| (x − 2)4 | (x − 2)4 | (x − 2)3 |
| 4 | ||
y'' = | ||
| (x − 2)3 |
| x | 2 | |||
f(x)= | = 1+ | , x≠ 2 | ||
| x−2 | x−2 |
| 2 | ||
f'(x)= − | ||
| (x−2)2 |
| 2 | 2 | 4 | ||||
f'(x)= + | *[(x−2)2]' = | *(2x−4)= | ||||
| (x−2)4 | (x−2)4 | (x−2)3 |