"Związki miarowe w figurach płaskich"
Martiminiano: Wyznacz promień R okręgu opisanego na trójkącie o danym polu P, wiedząc, że dwa boki tego
trójkąta mają długość a i b.
Proszę o pomoc w rozwiązaniu tego zadania, próbuję już 2 godzinę i niestety bez oczekiwanego
rezultatu. Nie proszę o gotowe rozwiązanie, ale jakieś wskazówki itp.
Zadanie znajduje się w temacie "Związki miarowe w figurach płaskich", wiem, że trzeba
| | abc | |
wykorzystać do jego rozwiązania wzór P= |
| |
| | 4R | |
11 cze 22:20
sushi_ gg6397228:
wzór na pole trójkąta "dwa boki + kąt" + tw sinusów
11 cze 22:28
Maslanek: Musisz obliczyć c.
| | 1 | |
Proponuję skorzystać ze wzoru na pole P= |
| ab sin(x) |
| | 2 | |
A następnie policzyć cos(x) i skorzystać z tw. cosinusów dla policzenia c.
Reszta to czyste liczenie, więc się nie zagłębiam
11 cze 22:28
Maslanek: Dalej brakuje długości c, sushi
11 cze 22:29
Martiminiano: Dziękuję za sugestie, pokombinuję dalej
11 cze 22:32
Martiminiano: Wreszcie się udało

1. Ze wzoru na pole
P=
12*a*b*sinα wyznaczyłem sobie sinα
2. Z jedynki trygonometrycznej obliczyłem cosα
3. Z twierdzenia cosinusów obliczam bok c
| | abc | |
4. I na koniec wykorzystałem przekształcony już wzór R= |
| |
| | 4P | |
11 cze 23:53