Wykres funkcji kwadratowej
Proxi: Cześć, prosiłbym o pomoc przy tym zadaniu: Narysuj wykres funkcji f(x)= −|x2+4x|+1. Określ
liczbę rozwiązań równania f(x)=m w zależności od wartości parametru m.
7 cze 16:39
Piotr 10: Najlepiej to wpierw wyłączyć minus przed nawias, a więc:
f(x) = − ( Ix2+4xI − 1 )
Teraz rysujemy wykres y = x2 + 4x
Następnie robimy WbOX ( to co jest na górze pozostawiamy bez zmian, a to co jest poniżej osi
X odibjamy względem niej )
Następnie translacja o wektor u→=[ 0 ; − 1 ]
A na końcu symetria względem osi OX ( SOX )
Ja to bym to tak robił
7 cze 16:44
Proxi: Dzięki, narysowałem wykres ale teraz muszę jeszcze określicz liczbę rozwiązań równania f(x)=m w
zależności od wartości parametru m
7 cze 17:10
Piotr 10: To tak:
Rysujesz sobie kilka prostych ( tylko tak lekko je rysuj najlepiej ołówkiem lub innym kolorem)
równoległych do osi OX ( tak na oko ) . I teraz liczba przecięc z tą prostą oznacza liczbę
rozwiązań
7 cze 17:15
Proxi:

Wyszedł mi taki wykres. Czyli dla m∊R rozwiązaia są 4?
7 cze 17:37
Mila:

f(x) = −( Ix
2+4xI − 1 )
g(x)=x
2+4x
g(−2)=4+4*(−2)=−4
|g(−2)|=4
|g(−2)|−1=3
Po przekształceniach
(−2,−3) wsp. wierzchołka
1) m<−3 dwa rozwiązania
2)m=−3 3 rozwiązania
3) m∊(−3,1) cztery rozwiązania
( przykład dla y=−1)
4) m=1 dwa rozwiązania
5) m>1 brak rozwiązań
7 cze 18:28