| a+b+c | a | a+b+c | b | a+b+c | c | |||||||
b) udowodnij, że | = | , | = | , | = | |||||||
| ha | r | hb | r | hc | r |
| 1 | 1 | 1 | 1 | |||||
c) wykaż, że | + | + | = | |||||
| ha | hb | hc | r |
| c*r | ||
a) P1(ΔABS) = | ||
| 2 |
| a*r | ||
P2(ΔBCS) = | ||
| 2 |
| b*r | ||
P3(ΔCAS)= | ||
| 2 |
| (a+b+c)*r | ||
P(ΔABC) = P1+P2+P3= | ||
| 2 |
| a*ha | b*hb | c*hc | (a+b+c)*r | |||||
PΔ(ABC)= | = | = | = | |||||
| 2 | 2 | 2 | 2 |
| a*ha | (a+b+c)*r | a+b+c | a | |||||
= | ..... => | = | ||||||
| 2 | 2 | ha | r |
| (a+b+c)*r | 1 | a | ||||
ha= | ....... to | = | ||||
| a | ha | (a+b+c)*r |
| 1 | 1 | 1 | a+b+c | 1 | |||||
+ | + | = | = | ||||||
| ha | hb | hc | (a+b+c)*r | r |