matematykaszkolna.pl
Całka nieoznaczona Bartek: Nie wiem jak policzyć całke ∫dx/(x2+x) Pomocy
4 cze 15:09
Bartek: Próbowałem kombiować∫(x2+x)(1) albo ∫x(x+1)(1) ale nie wiem co dalej
4 cze 15:11
ZKS: Rozkład na ułamki proste.
4 cze 15:12
J:
 1 1 1 
= ∫

dx = ∫

− ∫

= ..
 x(x+1) x x+1 
4 cze 15:14
Bartek: Serdecznie Dziękuje i Pozdrawiam
4 cze 15:17
Bartek: Z tym że tam nie powinno byc ∫1/x * ∫1/x+1 ?
4 cze 15:35
J: ∫ [f(x)*g(x)]dx ≠ ∫f(x)dx*∫g(x)dx
4 cze 15:41
Bartek: a gdy wynik mamy Ln|x| − ln |x+1| i liczymy całke oznaczoną |nieskonczonosc na gorze) i 1 na dole To wychodzi [ln||−ln|+2| ] − (ln|1| − ln|2|) = ()+ln|2| Mam obliczyć czy całka jest zbieżna lub rozbieżna, ale granicy nie bardzo wiem jak policzyć może ktoś pomóc skończyć zadanko ?
4 cze 16:21
Mila:
 x x 1 1 
[ln|

|]0=limx→ln

−ln

=ln1−ln

=0−ln(1)+ln(2)=ln(2)
 x+1 x+1 1+1 2 
4 cze 16:35