| a2−b2 | sin(α−β) | ||
= | |||
| c2 | sinγ |
| sinαcosβ−cosαsinβ | ||
P= | co dalej ,zapomniałem napisać polecenia : wykaż ze | |
| sinαcosβ+cosαsinβ |
co się da np. tak :
| a2−b2 | 4R2sin2α−4R2sin2β | |||
L= | = z tw. sinusów: | = | ||
| c2 | 4R2sin2γ |
| sin2α−sin2β | (sinα−sinβ)*(sinα+sinβ) | |||
= | = | = | ||
| sin2γ | sin2γ |
| 2sin12(α−β)cos12(α+β)*2sin12(α+β)cos12(α−β) | ||
= | = | |
| sin2γ |
| sin(α−β)*sin(α+β) | ||
= o już widzę, że będzie o.k., a więc dalej = | = | |
| sin2γ |
| sin(α−β)*sin(180o−γ) | sin(α−β)*sinγ | sin(α−β) | ||||
= | = | = | =P ![]() | |||
| sin2γ | sin2γ | sinγ |