| 1 | ||
log3(log | (log2 x))= −1 | |
| 8 |
| 1 | ||
log18(log2 x) = 3−1 = | ||
| 3 |
| 1 | 1 | |||
log2 x = ( | )13 = | |||
| 8 | 2 |
| 1 | ||
log18(log2 x) = 3−1 = | ||
| 3 |
| 1 | 1 | |||
log2 x = ( | )13 = | |||
| 8 | 2 |
np. tak : z definicji i własności logarytmu wyznaczam
dziedzinę równania: x >0 i log2x >0 i log18(log2 x) >0 ⇔
⇔ x>0 i x>20 i log2x<(18)0 ⇔ x>0 i x>1 i x<21 ⇔ 1<x<2,
czyli Dr= (1;2) − dziedzina danego równania, wtedy :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
log3 (log18 log2 x)= −1 ⇔ log18 log2 x= 3−1 ⇔
⇔ log2 x=(8−1)3−1 ⇔ log2 x=(2−3)3−1 ⇔ log2 x=2−1 ⇔
⇔ x= 22−1 ⇔ x=212 ⇔ x=√2 ∊ D . ...