matematykaszkolna.pl
Dowód - rysunek i wskazówka Maron: Dany jest czworokąt ABCF, na którym AB || CD. Na boku BC wybrano taki punkt E, że |EC| = |CD| i |EB| = |BA|. Wykaż, że kąt AED jest prosty. Poszę o rysunek i jakąś wskazówkę o ile to możliwe
1 cze 13:09
Saizou : rysunek
1 cze 13:16
nissan 2.0.TD: Uwierz mi. I.A. Maron nie mialby takich kolpotow emotka
1 cze 13:19
Maron: A jakaś wskazówka ? Nie mam pojęcia jak powinienem zacząć
1 cze 13:20
mix: rysunek
1 cze 13:25
Maron: Wszystko ok, tylko nie wiem skąd Ci się wzięło tam przy wysokości od punktu E na gorze β a na dole kąta α. Mógłybś pomóc ?
1 cze 13:26
Saizou : ∡DCE=180−2β ∡ABC=180−2α suma miar kątów przy jednym ramieniu trapezu wynosi 180 180−2α+180−2β=180 2α+2β=180 α+β=90 ∠AED+α+β=180 jako kąt półpełny ∠AED=90
1 cze 13:37
mix: emotka
1 cze 13:37
Saizou : mix a gdzie emotka od Ety emotka
1 cze 13:38
mix: emotka emotka
1 cze 13:40
Saizou : emotka na szarlotkę będzie xd
1 cze 13:42
Maron: Dzięki, teraz wszystko rozumiem. Ale zostało mi jeszcze kilka zadanek i pewnie z nimi również będę potrzebował mniejszej lub większej pomocy, więc będę pisał w tym temacie
1 cze 13:47
Maron: rysunekNo właśnie ... Punkt E jest środkiem odcinka BC. Uzasadnij, że pole trapezuABCD i pole trójkątaAFD są równe. Jeśli bym podzielił to tak ,że górna podstawa to X dolna Y to mógłbym zrobić ,że X+Y2 = odległość od E do punktu P, ale nie wiem co dalej i czy w ogóle to się przyda ?
1 cze 13:53
Saizou : istotą jest pokazanie że BF=CD PS. podobieństwo trójkątów, a nawet przystawanie emotka
1 cze 13:55
Saizou : rysunek
 1 
PABCD=

(a+b)h
 2 
 1 
PADF=

(a+y)h
 2 
ΔBEF~ΔCDE ⇒ a=y i już praktycznie koniec xd
1 cze 14:00
mix: rysunek Trójkąty BEF i DCE są przystające z cechy (kbk) zatem mają równe pola P1 to : ....... dokończ uzasadnienie
1 cze 14:05
mix: emotka
1 cze 14:07
Maron: Wyszło mi, że PABCD = 12 (a+b) * h PΔADF= 12 (b+y) *h I jak mam udowodnić, że pola są równe ?
1 cze 16:01
mix: P(AFD)=P2+P1 , P(ABCD)= P2+P1 ⇒ ...........
1 cze 16:06
Maron: Dobra, mam. a=b, bo są przystające . Jeszcze : Trójkąt o bokach 10,24,26 wpisano w okrąg. Wykaż, że pole koła ograniczonego tym okręgiem jest równe 169π.
1 cze 16:06
pigor: ... , np. tak : zauważ , że dany trójkąt jest ...emotka prostokątny, bo 102+242= 262, wtedy R=13 , no to Pk= πR2= 132π= 169π , c.n.w.
1 cze 16:34
Maron: Jeszcze jedno : Dany jest trapez ABCD, w którym AB || CD. Wykaż, że pola trójkątów ABC i ABD są równe.
1 cze 17:55
Eta: rysunek
 a*h a*h 
P(ABC)=

, P(ABD)=

⇒ wniosek ....
 2 2 
1 cze 18:06
Maron: No i jeszcze jedno : W trójkącie ABC na boku AB zaznaczono punkty D i E tak, że |AD| = |EB| = 15 |AB|. Wykaż, że PDEC = u {3}{2} (PADC + PEBC).
1 cze 18:20
Saizou : rysunek zauważmy że każdy z tych małych trójkątów ma jednakowe pole i już po kłopocie emotka
1 cze 19:12
Maron: A skąd wiemy, że każdy ma takie samo pole ?
1 cze 21:34
Maron: Dobra wiem już
1 cze 21:41