planim
zawodus:
Czworokąt ABCD wpisany jest w okrąg, przy czym |CD|=|DA|. Na odcinkach AB i BC wybrano
odpowiednio punkty E i F, dla których ∡ ADC = 2∡ EDF. Odcinek DK jest wysokością trójkąta DEF,
a DM jego środkową. Punkt L jest symetryczny do K względem M. Udowodnij, że proste DM i BL są
równoległe.
29 maj 15:11
kyrtap:
29 maj 15:55
zawodus: Dzięki za rysunek

A ktoś potrafi rozwiązać?
29 maj 21:39
kyrtap:
29 maj 21:39
bezendu:
Na matematyka.pl też wiedzę dałeś
29 maj 21:40
zawodus: To nie dla mnie, tylko dla koleżanki. Sam nie mam czasu pomyśleć, ale nie wiem czy bym to umiał
29 maj 21:44
29 maj 22:02
kyrtap: ja dzisiaj siedziałem godzinę nad tym zadaniem i ściana
29 maj 22:07
zawodus: ZKS dzięki wielkie

wiedziałem że to zadanie z olimpiady, ale nie wykorzystałem googla, bo
myślałem że koleżanka to zrobiła

Wystarczyło poszukać
29 maj 22:45