| n2 + 4 − n2 | 4 | |||
√n2 + 4 − n = | = | |||
| √n2 + 4 + n | √n2 + 4 + n |
| n2 + 1 − n2 | 1 | |||
√n2 + 1 − n = | = | |||
| √n2 + 1 + n | √n2 + 1 + n |
| 4 | 1 | 4*( √n2 + 1 + n) | ||||
an = | : | = | ||||
| √n2 + 4 + n | √n2 + 1 + n | √n2 + 4 + n |
| 4*(√1 + 1n2 + 1) | ||
an = | ||
| √1 + 4n2 + 1 |
| 4*( √1 + 0 + 1) | 8 | |||
lim an = | = | = 4 | ||
| √1 + 0 + 1 | 2 |
| a2 − b2 | ||
a − b = | , który wynika z wzoru a2 − b2 = ( a − b)*( a + b) | |
| a + b |