Zadanie na logike
Johnny Bravo: Liczbę 12 przedstawić w postaci iloczynu takich dwóch liczb rzeczywistych dodatnich aby suma
czynników tego iloczynu była najmniejsza.
Znalazłem takie zadanko ale nie umiem dojść do rozwiązania robię tak:
a*b=12
a+b−> min
a + 12/a > min
a
2 + 12 >min
Liczę deltę = −48 . Wierzchołek (0,12), ale nic z tego nie wynika, co muszę zrobić, albo jak
to
policzyć wgl?

. Pozdarwiam
5 maj 22:31
sushi_ gg6397228:
zacznij od wersji na piechote
1*12
2*6
3*4
√12* √12
5 maj 22:53
ICSP: A2 ≥ G2 przy czym równość zachodzi tylko gdy liczby są równe.
stąd a = b = √12
12 = √12 * √12 − szukana wartość.
5 maj 23:01
Johnny Bravo: wynik też znam, ale jak do niego dojść ?

bez pochodnych, bo pochodnymi to 2 kroki i zrobione
5 maj 23:02
Johnny Bravo: A2 G2, chodzi o ciąg arytm i geo?
5 maj 23:04
ICSP: średnia arytmetyczna ≥ średniej geometrycznej
5 maj 23:06
ICSP: a 2 oznacza liczbę składników.
5 maj 23:06
Johnny Bravo: Mhmm... no tak, ale muszę to udowadniać , że A2 ≥ G2 ? wtedy co podstawiam 12 czy jak?
5 maj 23:11
ICSP: Nie musisz udowadniać.
Piszesz
Arytmetyczna ≥ Geometrycznej :
a + b ≥ 2
√12
Równość zachodzi tylko wtedy gdy a = b stąd :
a + a = 2
√12
2a = 2
√12
a =
√12 = b
5 maj 23:16
Johnny Bravo: A no to rozumiem. Super w takim razie, a już myślałem, że wszystkie zadania tego typu to
wierzchołek paraboli i tyle

. Dzięki
5 maj 23:18
Domel:
No a dalej to np. z zależności między średniki: średnia arytmetyczna ≥ średnia geometryczna
a
2+12 ≥ 4a*
√3
a
2 − 4a*
√3 + 12 ≥ 0
Δ = 48 − 48 = 0
a = 2
√3 − i jest to minimum dla a
5 maj 23:20
Domel: ICSP − pisaliśmy w tym samym czasie

ale mnie rozpraszał trochę film 2012
5 maj 23:22
Domel: No i filmik tak mnie rozpraszał, że nie zauważyłem nawet że pod pierwiastkiem od razu mam 12 −
fuj, a fe − wyłączę telepatrzydło
5 maj 23:25
pigor: ... ,

czyli gdy a=b=
√12=
2√3 − szukane składniki .
5 maj 23:25
ICSP: Witam wszystkich
5 maj 23:26
Domel:
5 maj 23:29