| π | 3π | |||
czyli rozwiązania to x= 0, x= | , x=π, x= | , x= 2π. | ||
| 2 | 2 |
| π | ||
Jednak w odpowiedziach mam tylko trzy liczby : x= 0, x= | , x= 2π | |
| 2 |
?
| π | ||
sinx+cosx=√2sin( | +x)=1 | |
| 4 |
| π | √2 | |||
sin( | +x)= | |||
| 4 | 2 |
| π | π | π | 3 | ||||
+x= | +2kπ lub | +x= | π+2kπ | ||||
| 4 | 4 | 4 | 4 |
| π | ||
x=2kπ lub x= | +2kπ | |
| 2 |
| x | x | x | x | x | x | |||||||
2sin | cos | + cos2 | − sin2 | = sin2 | + cos2 | |||||||
| 2 | 2 | 2 | 2 | 2 | 2 |
| x | x | x | ||||
2sin2 | − 2sin | cos | = 0 | |||
| 2 | 2 | 2 |
| x | x | x | ||||
sin | (sin | −cos | ) = 0 | |||
| 2 | 2 | 2 |
| x | x | x | ||||
sin | = 0 ⋁ sin | = cos | ||||
| 2 | 2 | 2 |
| x | ||
skoro x∊<0, 2π>, to | ∊<0, π>, zatem | |
| 2 |
| x | x | x | π | ||||
= 0 ⋁ | =π ⋁ | = | |||||
| 2 | 2 | 2 | 4 |
| π | ||
x = 0 ⋁ x = 2π ⋁ x = | ||
| 2 |