Zapis przekształconych równań
Draghan: Witam

Mam pytanie, dotyczące kwestii formalnej zapisu równań

Sprawa błaha, niemniej ostatnio mnie "męczy"

Pytam w kontekście maturki, oczywiście, ale myślę, że nie tylko tam mi się przyda

Czy jeśli mam równanie, np. (1) 2a = 3b i chcę przekształcić jakoś to równanie, np.
| | 3 | |
do (2) a = |
| b, jakiego symbolu matematycznego użyć? Dotychczas nie zawracałem sobie tym |
| | 2 | |
głowy, bo u siebie w notatkach pisałem raczej chaotycznie

, a na sprawdzianach, czy
egzaminach, pisałem takie przekształcone równania "w słupku", czyli jedno pod drugim. Tylko że
szkoda miejsca czasami

To się tak zastanawiam

Czy to będzie formalnie poprawne, kiedy napiszę w taki sposób?
Czy jeszcze jakoś inaczej takie coś należy napisać?
1 maj 13:15
zawodus: tak jest ok, bo z jednego wynika drugie i na odwrót.
Trzeba zawsze uważać na to, aby nie napisać ⇔ wtedy, gdy prawdziwa jest tylko implikacja w
jedna stronę
1 maj 13:17
5-latek: | | 3b | |
To przeciez taki sam zapis co |
| . |
| | 2 | |
Przez takie durnoty CKE czasami doprowadza do absurdu
Wiec pisz jak CI pasuje
1 maj 13:19
Draghan: Wiem, że taki sam zapis ^^ Właśnie chodzi mi o takie cosie, kiedy jedno wynika z drugiego i
odwrotnie

Żeby nie musieć pisać w słupku, a żeby jakoś to wyglądało i było poprawne

A np. jeśli podnoszę do kwadratu, to również można dać to "⇔"?
1 maj 13:22
razor: x = 2 ⇔ x
2 = 4 ⇔ x = 2 lub x = −2
jak sądzisz?
1 maj 13:23
Draghan: No, nie pasuje za bardzo
1 maj 13:25
Bogdan:
Ja używam oznaczenia ⇒
1 maj 13:32
zawodus: Zawsze bezpieczniej
1 maj 13:33
Draghan: Aha, czyli mogę machnąć strzałeczkę taką w prawo i będzie dobrze?

Wtedy (1) x = 2 ⇒ x
2 = 4 jest poprawne i można napisać również coś w tym guście
| | b | |
(2) 2a = b ⇒ a = |
| i też będzie poprane?  |
| | 2 | |
1 maj 13:46
Bogdan:
Uważam, że tak jest poprawnie
1 maj 14:02
Draghan: Dziękuję Wam ślicznie
1 maj 14:19
Trivial:
Draghan, zapis R
1 ⇔ R
2 oznacza, że z R
1 można wyprowadzić jednoznacznie R
2 ale także z
R
2 można jednoznacznie wyprowadzić R
1.
Z kolei R
1 ⇒ R
2 oznacza "z R
1 można jednoznacznie wyprowadzić R
2" i nic więcej.
1 maj 15:14
Draghan: Tak (mniej więcej) myślałem

I Tobie dziękuję

Miłego dnia!
1 maj 15:16
Trivial:
I wszędzie tam, gdzie można użyć '⇔' można użyć też '⇒' lub '⇐'.
x = 2 ⇔ x2 = 4 jest zapisem niepoprawnym, gdyż z x2 = 4 nie wynika jednoznacznie, że x = 2.
1 maj 15:24
Draghan:
1 maj 15:30