| 2k+3 | ||
cos3x= | ||
| k−3 |
| 2k+3 | ||
cosx e <−1;1> zatem 1≥ | ≥ −1 czy mozna tak? | |
| k−3 |
| k−3 | 2k+3 | −1(k−3) | |||
≥ | ≥ | ||||
| k−3 | k−3 | k−3 |
| 2k+2 | ||
−1≤ | ≤1 | |
| k−3 |
| 2k+3 | ||
1≥ | ≥−1 | |
| k−3 |
| 2k+3 | 2k+3 | |||
1≥ | ≥−1 | |||
| k−3 | k−3 |
| 2k+3 | ||
1≥ | ||
| k−3 |
| 2k+3 | ||
0≥ | −1 | |
| k−3 |
| 2k+3 | −k+3 | |||
0≥ | + | |||
| k−3 | k−3 |
| 2k+3−k+3 | ||
0≥ | ||
| k−3 |
| k+6 | ||
0≥ | ||
| k−3 |
| 2k+3 | |
≥−1 | |
| k−3 |
| 2k+3 | k−3 | ||
+ | ≥0 | ||
| k−3 | k−3 |
| 2k+3+ k−3 | |
≥0 | |
| k−3 |
| 3k | |
≥0 | |
| k−3 |
o)
SUMA SUM !
ke(−oo;0> U <3
o)
ke<−6;3>
ke <−6;0>
Miałeś racje z tym swoim twierdzeniem bezendu
| 2k + 3 | ||
−1 ≤ | ≤ 1 | |
| k− 3 |
| 9 | ||
−1 ≤ 2 + | ≤ 1 | |
| k − 3 |
| 9 | ||
−3 ≤ | ≤ −1 | |
| k−3 |
| k − 3 | 1 | |||
−1 ≤ | ≤ − | |||
| 9 | 3 |
k≠3
| 2k+3 | ||
| | |≤1 ⇔ |2k+3|≤|k−3| | |
| k−3 |