| x − arcsin4 x | ||
1) S | ||
| √1−x2 |
| sinx | ||
3)S | dx | |
| 3+2cosx |
| 3sinx | ||
5)S | dx | |
| 3√5cosx +2 |
| arctg(√x +2) | ||
6)S | dx | |
| √x |
| dx | ||
7) S | ||
| (x2 +1) √4−arct2 x |
| e3tgx −1 +2 | ||
10)S | dx | |
| cos2 x |
| x3 | x2 | |||
u = | − | |||
| 3 | 2 |
| x3 | x2 | x3 | x2 | |||||
... (1) = ( | − | )cos(2x) + 2∫( | − | )sin(2x)dx = | ||||
| 3 | 2 | 3 | 2 |
| 2x3 | 3x2 | 2x3 | 3x2 | |||||
= ( | − | )cos(2x) + 2∫( | − | )sin(2x)dx = | ||||
| 6 | 6 | 6 | 6 |
| 2x3 − 3x2 | 2x3 − 3x2 | |||
= ( | )cos(2x) + 2∫( | )sin(2x)dx = | ||
| 6 | 6 |
| 1 | 1 | |||
= | (2x3 − 3x2)cos(2x) + | ∫(2x3 − 3x2)sin(2x)dx = | ||
| 6 | 3 |
| 1 | 1 | |||
= | (2x3 − 3x2)cos(2x) + | [∫2x3sin(2x)dx − ∫3x2sin(2x)dx] = ... | ||
| 6 | 3 |
| 2log(4x) | ||
dv = | dx | |
| x |
| x4 | ||
u = | + x | |
| 4 |
| x4 | x4 | 2log(4x) | ||||
... (1) = ( | + x)ln2(4x) − ∫( | + x) | dx = | |||
| 4 | 4 | x |
| x4 | 4x | x4 | 4x | log(4x) | ||||||
= ( | + | )ln2(4x) − 2∫( | + | ) | dx = | |||||
| 4 | 4 | 4 | 4 | x |
| 1 | 1 | log(4x) | ||||
= | (x4 + 4x)ln2(4x) − | ∫(x4 + 4x) | dx = | |||
| 4 | 2 | x |
| 1 | 1 | |||
= | (x4 + 4x)ln2(4x) − | [∫x3log(4x)dx + 4∫log(4x)dx] = ... | ||
| 4 | 2 |
pomoże ktoś z resztą ?