123
olka: w trojkacie abc poprowadzono odcinek kL rownolegly do boku ab taki ze k ∊ ac, L ∊ bc. wiedzac
ze |ak| / |kc|=s wyznacz
a |cL| / |bL|
b |bL| / |bc|
17 kwi 19:37
Alfa:
Skoro:
| | |AK| | | |KC| | | 1 | |
|
| = s => |
| = |
| |
| | |KC| | | |AK| | | s | |
to:
| | |CL| | | |KC| | | 1 | |
a) |
| = |
| = |
| |
| | |BL| | | |AK| | | s | |
| | |AK| | |
b) |AC| = |AK|+|KC| i |
| = s |
| | |KC| | |
więc: |AK| = s|KC|
wówczas: |AC| = s|KC| + |KC| = |KC|(s+1)
wracam do proporcji:
| |BL| | | s|KC| | |
| = |
| |
| |BC| | | |KC|(s+1) | |
17 kwi 19:57