| p | ||
sinα= | ⇒ p≠−2 | |
| p+2 |
| p | (p+2)2−p | p2+3p+4 | ||||
cos2α=1− | = | = | ||||
| (p+2)2 | (p+2)2 | (p+2)2 |
| p | p+2 | p | ||||
tgα= | * | = | =... | |||
| p+2 | √p2+3p+4 | √p2+3p+4 |
| p2 | ||
cos2α=1− | ... dalej sama − ![]() | |
| (p+2)2 |
ma wyjsc (p√p+1)/2p+2
| (p+2)2 − p2 | p2 | |||
cos2x= | oraz sin2x = | |||
| (p=2)2 | (p+2)2 |
| sin2x | ||
Teraz : tg2x = | .. podstaw ,uprość i zpierwiastkuj ... i wynik wychodzi. | |
| cos2x |
| p2 | p | |||
tg2x = | i tgx = | i usuń niewymierność | ||
| 4(p+1) | 2√(p +1) |