| 5x2−12 | ||
obliczyc calke ∫ | dx | |
| (x2−6x+13)2 |
| 5x2−12 | Ax+B | Cx+D | |||
= | + | ||||
| (x2−6x+13)2 | x2−6x+13 | (x2−6x+13)2 |
| 5x2−12 | ||
∫ | dx= i co dalej? | |
| ((x−3)2+4)2 |
| 5 | ||
i mamy ∫ | dx | |
| x2−6x+13 |
| 30x−77 | 2x−6 | dx | ||||
∫ | dx=15∫ | dx+17∫ | =I1+I2 | |||
| (x2−6x+13)2 | (x2−6x+13)2 | (x2−6x+13)2 |
| 5x2 − 12 | x2 − 12/5 | ||
= 5 | = | ||
| (x2−6x+13)2 | (x2−6x+13)2 |
| x2 −6x +13 + 6x − 77/5 | 5 | 30x − 77 | ||||
= 5 | = | + | = | |||
| (x2−6x+13)2 | x2−6x+13 | (x2−6x+13)2 |
| 5 | 2x − 6 | 13 | ||||
= | + 15 | + | ||||
| x2−6x+13 | (x2−6x+13)2 | (x2−6x+13)2 |
| 13dx | 13dx | 1 | 13dx | |||||
∫ | = ∫ | = | * ∫ | |||||
| (x2−6x+13)2 | ((x−3)2 + 4)2 | 16 | (((x−3)/2)2 + 1)2 |
| x−3 | ||
t = | ||
| 2 |
| dx | 1 | x | 2n−3 | dx | ||||||
∫ | = | * | + | ∫ | ||||||
| (x2+1)n | 2n−2 | (x2+1)n−1 | 2n−2 | (x2+1)n−1 |
| 5*(2t+3)2−12 | ||
2∫ | dt= | |
| (4t2+4)2 |
| 20t2+60t+33 | ||
=2∫ | dt= | |
| 16(t2+1)2 |
| 20*(t2+1)+60t+13 | ||
=∫ | dt= | |
| 8*(t2+1)2 |
| 20 | 60t+13 | |||
=∫ | dt+∫ | dt= | ||
| 8*(t2+1) | 8*(t2+1)2 |
| 1 | ||
a ta druga tak jak wczesniej bylo mowione mozna ze wzoru na ∫ | dx a czy mozna | |
| (x2+1)n |
| dx | ||
∫ | = | tg(u) = x ⇒ [tg2(u) + 1]du = dx | = | |
| (x2 + 1)2 |
| tg2(u) + 1 | du | ||
du = ∫ | = | ||
| [tg2(u) + 1]2 | tg2(u) + 1 |
| 1 | 1 | |||
∫ cos2(u)du = ∫ | cos(2u)du + ∫ | du = | ||
| 2 | 2 |
| 1 | 1 | x | 1 | ||||
sin(2u) + | u + C = | + | arctg(x) + C | ||||
| 4 | 2 | 2(x2 + 1) | 2 |
| dx | ||
1) Można do całki ∫ | zastosować podstawienie x=tg(t), dx=(tg2x+1) dt | |
| (x2+1)2 |
| dx | 1 | 1 | x | |||||
∫ | = | arctgx+ | * | +C | ||||
| (x2+1)2 | 2 | 2 | (x2+1) |
| 30*2 | 13 | |||
∫ | dt+∫ | dt= J1+J2 | ||
| 8*(t2+1)2 | 8*(t2+1)2 |
| 30*2 | 30 | 1 | 15 | −15 | 1 | |||||||
J1=∫ | dt= | ∫ | du= | *(−1)*u−1= | * | = | ||||||
| 8*(t2+1)2 | 8 | u2 | 4 | 4 | t2+1 |
| −15 | 1 | −15 | 4 | −15 | |||||||||||||||
= | * | = | * | = | |||||||||||||||
| 4 |
| 4 | x2−6x+13 | x2−6x+13 |
| 13 | 1 | 13 | 1 | t | ||||||
J2= | ∫ | = | *[ | arctgt+ | ]= | |||||
| 8 | (t2+1)2 | 8 | 2 | 2(t2+1) |
| 13 | x−3 |
| |||||||||||||
= | [arctg | + | ]= | ||||||||||||
| 16 | 2 |
|
| 13 | x−3 | 13 | 2(x−3) | |||||
= | arctg( | )+ | * | = | ||||
| 16 | 2 | 16 | x2−6x+13 |
| 13 | x−3 | 13x−39) | ||||
= | arctg( | )+ | = | |||
| 16 | 2 | 8*(x2−6x+13) |
| 20 | x−3 | 13 | x−3 | 13x−39) | −15 | ||||||
arctg( | )+ | arctg( | )+ | + | = | ||||||
| 8 | 2 | 16 | 2 | 8*(x2−6x+13) | x2−6x+13 |
| 53 | x−3 | 13x−39−120 | ||||
= | arctg( | )+ | +C= | |||
| 16 | 2 | 8*(x2−6x+13) |
| 53 | x−3 | 13x−159 | ||||
= | arctg( | )+ | +C | |||
| 16 | 2 | 8*(x2−6x+13) |