v
Martt: ?Uzasadnij że liczba a, taka że a=3n + 3 n+1 + 3 n+2 , jest podzielna przez 13
14 kwi 15:41
Wazyl: 3n przed nawias
14 kwi 15:42
Kinia: + z teorii

"Cechy podzielności przez 13
Aby dowiedzieć się czy dana liczba dzieli się przez 13, skreślamy jej ostatnie trzy cyfry, a od
tak powstałej liczby odejmujemy liczbę skreśloną, jeśli ta różnica dzieli się przez 13 to i
liczba jest podzielna przez 13.
Przykład:
461435 bo 461−435=26 i 26=2*13 "
14 kwi 15:45
Wazyl: Kinia to zapisz ta liczbę i podaj 3 ostatnie cyfry.
14 kwi 15:48
Kinia: A co da nam wyciągniecie 3n przed nawias?
W jaki sposób będzie udowodnione iż ta liczba dzieli się przez 13...?
14 kwi 15:50
Wazyl: Wyciągnij to zobaczysz.
14 kwi 15:57
J: = 3n(1 + 3 + 9) = ..... , a teraz widzisz ?
14 kwi 16:21
zawodus: Ja cały czas czekam na rozwiązanie Kini
14 kwi 16:27
J: Ciekawe ...
14 kwi 16:31
...:
ale 222111
222−111=111 ... a to nijak nie chce się dzielić przez 13
14 kwi 16:51
razor: może dlatego że 222111 też się nie dzieli przez 13
14 kwi 17:02