| x | 9 | |||
a) | = | /*3 | ||
| 3 | x2 |
| 27 | ||
x= | /*x2 | |
| x2 |
| 3 | |
=1 /*(x2−4) | |
| x2−4 |
| (x−2)2 | |
=x−2 | |
| x−2 |
| (x−2)*(x+2) | |
=x−2 | |
| x−2 |
| x+2 | |
=x−2 | |
| 1 |
−2 = −x
wartość bezwzględna
2 = x
c)
x2−9/x−3 = x+3
hmm, można to rozpisać:
(x2−9)/(x−3) = (x+3)/1
(x2)−9 = (x−3)*(x+3)
(x2)−9 = x2 + 3x − 3x −9
dodajemy 9
x2 = x2
wychodzi 0
d)
x/(z2)+ 3 = 2
odejmujemy 3
x/(z2) = −1
x/(z2) = −1/1
x = − z2
z = −√x
e)
3/(x2)−4 =1
dodajemy 4
3 / (x2) = 5 / 1
3 = 5 (x2)
(3/5) = x2
x = √ (3/5)